Notes on Fourier Series: Strong Approximation

V. Totik
Bolyai Institute, Aradi V. tere 1, Szeged 6720, Hungary
Communicated by Oved Shisha

Received March 12, 1981; revised May 18, 1984

Abstract

Two results are proved about strong approximation of Fourier series. The first, which goes in the positive direction, is the best possible refinement of an inequality of L. Leindler. The second is related to the inverse problem and provides a unified treatment to many earlier results. © 1985 Academic Press, Inc.

1. Introduction

Let f be an everywhere continuous 2π-periodic function, $s_{k}(x)$ the k th partial sum of its Fourier series and $E_{n}=E_{n}(f)$ the error in the best uniform approximation of f by trigonometric polynomials of order at most n.

Since the 1963 work of G. Alexits and D. Králik [1], many authors have investigated the so-called strong approximation of Fourier series. Among their results, perhaps the most important one is the inequality

$$
\begin{equation*}
\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|^{p} \leqslant K_{p} E_{n}^{p}(f) \quad(p>0 ; n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

due to L. Leindler [3] which can be used to estimate strong means of the type

$$
\left\{\sum_{k=1}^{\infty} t_{n k}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{1 / p} \quad\left(p>0, t_{n k} \geqslant 0\right)
$$

(see $[3,5]$).
A natural generalization is the following: instead of $x^{p}(x \geqslant c)$, let us consider a non-negative monotone increasing continuous function $\phi(x)(x \geqslant 0$, $\phi(0)=0)$. For such a ϕ, we proved in [7]

Theorem A. The means

$$
\frac{1}{n+1} \sum_{k=0}^{n} \phi\left(\left|s_{k}(x)-f(x)\right|\right)
$$

tend to zero for every continuous f if and only if there exists a constant A such that

$$
\begin{equation*}
\phi(\tau) \leqslant e^{A \tau} \quad(\tau \in(0, \infty)) \tag{1.2}
\end{equation*}
$$

An analog of (1.1) is
Theorem 1. The inequality

$$
\begin{equation*}
\frac{1}{n} \sum_{k=n+1}^{2 n} \phi\left(\left|s_{k}(x)-f(x)\right|\right) \leqslant K \phi\left(E_{n}\right) \quad(x \in[0,2 \pi], n=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

holds for every 2π-periodic continuous function f if and only if there is a constant $A>0$ such that (1.2) holds true and

$$
\begin{equation*}
\phi(2 \tau) \leqslant A \phi(\tau) \quad(\tau \in(0,1)) . \tag{1.4}
\end{equation*}
$$

Theorem 1 has many consequences of which we mention only one:
Corollary. If (1.2) and (1.4), then, for every $\beta>0$ and for $f^{(r)} \in \operatorname{Lip} \alpha$ $(0<\alpha \leqslant 1)$,

$$
\begin{aligned}
\phi^{-1} & \left(\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1} \phi\left(\left|s_{k}-f\right|\right)\right) \\
& \leqslant \phi^{-1}\left(\frac{K}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1} \phi\left((k+1)^{-r-\alpha}\right)\right)
\end{aligned}
$$

This generalizes a number of previous results, and the last inequality cannot, in general, be improved.

Let us now turn to the inverse problem. We ask what smoothness properties of f follow from the relation

$$
\begin{equation*}
\sup _{0 \leqslant x \leqslant \pi} \sum_{k=0}^{\infty} \phi\left(\left|s_{k}(x)-f(x)\right|\right)<\infty ? \tag{1.5}
\end{equation*}
$$

Here, again, $\phi(x)$ is supposed to be monotone increasing and continuous for $x \geqslant 0$, with $\phi(0)=0$. For example, G. Freud [2] proved that if $\phi(x)=x^{p}(p>1)$, then (1.5) implies $f \in \operatorname{Lip}(1 / p)$. Generalizing this result, we proved [6]

Theorem B. If ϕ is convex or concave, then (1.5) implies

$$
\begin{equation*}
\omega(f ; \delta) \leqslant K \delta \int_{\delta}^{2 \pi} \frac{\phi^{-1}(x)}{x^{2}} d x \quad(\delta \in[0, \pi]) \tag{1.6}
\end{equation*}
$$

and this is the best possible result, since, for a function f satisfying (1.5),

$$
\omega(f ; \delta) \geqslant c \delta \int_{\delta}^{2 \pi} \frac{\phi^{-1}(x)}{x^{2}} d x \quad(c>0 ; \delta \in[0, \pi]) .
$$

$(\omega(f ; \delta)$ is the modulus of continuity of f.)
If $\phi(x)=x^{p}(0<p<1)$, then Theorem B gives only $f \in \operatorname{Lip} 1$ although much more is true (see [4]):

Theorem C. If $f(x)=x^{p}(0<p<1)$, then (1.5) implies

$$
E_{n}(f) \leqslant K n^{-1 / p} .
$$

Theorem C yields, among other things, that f is $[v / p]$ times continuously differentiable ($v, 0<v<1$, is arbitrary).

Now we show that Theorem C and Freud's result are valid for very general ϕ 's.

Theorem 2. If ϕ satisfies

$$
\begin{equation*}
\phi(a \tau) \leqslant \frac{1}{2} \phi(\tau) \quad(\tau \in[0,1]) \tag{1.7}
\end{equation*}
$$

with a constant $0<a<1$, then (1.5) implies

$$
\begin{equation*}
E_{n}(f) \leqslant K \phi^{-1}\left(\frac{1}{n}\right) . \tag{1.8}
\end{equation*}
$$

As a corollary we get that under the only assumption (1.7), we have (1.6).

2. Proof of Theorem 1

I. Sufficiency. We shall use the inequality (see [5])

$$
\begin{equation*}
\frac{1}{r} \sum_{i=1}^{r}\left|s_{k_{i}}(x)-f(x)\right| \leqslant A_{1} E_{n}(f) \log \frac{2 n}{r} \tag{2.1}
\end{equation*}
$$

where $1 \leqslant r \leqslant n$, the indices $n<k_{1}<k_{2}<\cdots<k_{r} \leqslant 2 n$ are arbitrary, and A_{1} is an absolute constant. This gives at once that if $\lambda>0, x \in(0,2 \pi]$ and $\mu_{n, 2}(x)$ denotes the number of those $n<k \leqslant 2 n$ for which $\left|s_{k}(x)-f(x)\right|>$ λE_{n}, then

$$
\mu_{n, \lambda}(x) \leqslant 2 n \exp \left(-\lambda / A_{1}\right) .
$$

Let $y \in\left(0,\left(2 A A_{1}\right)^{-1}\right)$. By (1.4), $\phi(y) \geqslant y^{A_{2}}, A_{2}$ a constant. Thus, by (1.2),

$$
\begin{align*}
\sum_{k=2 / y}^{\infty} \phi(y k) e^{-k / A_{1}} & \leqslant \sum_{k=2 / y}^{\infty} \exp \left(k\left(A y-A_{1}^{-1}\right)\right) \\
& \leqslant \sum_{k=2 / y}^{\infty} e^{-k /\left(2 A_{1}\right)} \leqslant K e^{-1 /\left(y A_{1}\right)} \leqslant K \phi(y) . \tag{2.2}
\end{align*}
$$

(K denotes constants, not necessarily the same.)
From (1.4) we obtain

$$
\sum_{k=1}^{2 / y} \phi(y k) e^{-k / A_{1}} \leqslant \sum_{k=1}^{\infty} \phi(y) k^{A_{3}} e^{-k / A_{1}} \leqslant K \phi(y)
$$

with some A_{3} and this, together with (2.2), gives

$$
\sum_{k=1}^{\infty} \phi(y k) e^{-k / A_{1}} \leqslant K \phi(y) \quad\left(y \in\left(0,\left(2 A A_{1}\right)^{-1}\right)\right) .
$$

Now the proof of (1.3) is easy:

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=n+1}^{2 n} \phi\left(\left|s_{k}(x)-f(x)\right|\right) \\
& \quad=\frac{1}{n} \sum_{k=1}^{\infty} \sum_{E_{n}(k-1) \leqslant|s /(x)-f(x)| \leqslant E_{n} k} \phi\left(\left|s_{l}(x)-f(x)\right|\right) \\
& \quad \leqslant \frac{1}{n} \sum_{k=1}^{\infty} \phi\left(k E_{n}\right) \mu_{n, k-1}(x) \leqslant K \frac{1}{n} \sum_{k-1}^{\infty} 2 n \phi\left(k E_{n}\right) e^{-k / A_{1}} \leqslant K \phi\left(E_{n}\right)
\end{aligned}
$$

provided n is so large that $E_{n}=E_{n}(f) \in\left(0,\left(2 A A_{1}\right)^{-1}\right)$.
II. Necessity. The necessity of (1.2) follows from Theorem A.

To prove (1.4) let us assume on the contrary that there is a sequence $\left\{a_{n}\right\}$ with $a_{n} \downarrow 0(n \rightarrow \infty)$ and $\phi\left(40 a_{n}\right)>n \phi\left(20 a_{n}\right)$. We may also suppose $\sum_{k=n+1}^{\infty} a_{k}<a_{n}(n=1,2, \ldots)$. For $m<n$ let

$$
Q_{n, m}(x)=\sum_{i=1}^{m}\left(\frac{\cos (n-i) x}{i}-\frac{\cos (n+i) x}{i}\right) \equiv 2 \sin n x \sum_{i=1}^{m} \frac{\sin i x}{i}
$$

be the well-known Fejér polynomial and let

$$
f(x)=\sum_{k=1}^{\infty} a_{k} Q_{2^{k+2}, 2^{k}}(x) .
$$

As $\left|Q_{n, m}\right| \leqslant 10$ we get

$$
E_{2^{n+2}}(f) \leqslant E_{2^{n+2}-2^{n-1}}(f) \leqslant 10 \sum_{k=n}^{\infty} a_{k} \leqslant 20 a_{n} \quad(n=1,2, \ldots)
$$

and so

$$
\begin{aligned}
& \frac{1}{2^{n+2}} \sum_{k=2^{n+2}}^{2 \cdot 2^{n+2}} \phi\left(\left|s_{k}(0)-f(0)\right|\right) \\
& \quad \geqslant \frac{1}{2^{n+2}} \sum_{k=2^{n+2}+1}^{2^{n+2}+2^{n}} \phi\left(a_{n} \sum_{i=k-2^{n+2}}^{2^{n}} \frac{1}{i}\right) \\
& \quad \geqslant \frac{1}{2^{n+2}} \sum_{k=2^{n+2}+1}^{2^{n+2}+2^{n} \cdot e^{-10}} \phi\left(a_{n} \log \left(2^{n} /\left(k-2^{n+2}\right)\right)\right) \\
& \quad \geqslant \frac{1}{2^{n+3}} \frac{2^{n}}{e^{40}} \phi\left(40 a_{n}\right) \geqslant \operatorname{cn} \phi\left(20 a_{n}\right) \geqslant \operatorname{cn} \phi\left(E_{2^{n+2}}\right)
\end{aligned}
$$

i.e., (1.3) is not satisfied, which proves the necessity of (1.4).

3. Proof of Theorem 2

First we prove the following
Lemma. If $f \in C_{2 \pi}$ and $0<c<\frac{1}{2}$, then, for every natural number n, either
(i) $E_{2 n}(f) \leqslant 2 c E_{n}(f)$ or
(ii) there exists a point $x_{n} \in(0 ; 2 \pi]$ such that the number of the indices k for which

$$
n<k \leqslant 2 n, \quad\left|s_{k}\left(f ; x_{n}\right)-f\left(x_{n}\right)\right|>c E_{n}(f)
$$

is at least $A(c /|\log c|) n$ where A denotes an absolute constant.
Proof. Let

$$
H_{n}(x)=\left\{k\left|n<k \leqslant 2 n,\left|s_{k}(f ; x)-f(x)\right|>c E_{n}\right\}\right.
$$

If $2 c E_{n}<E_{2 n}$, then, using (2.1), we obtain for an $x_{n} \in(0 ; 2 \pi]$,

$$
\begin{aligned}
2 c E_{n} & <E_{2 n} \leqslant\left\|\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|\right\|_{c}=\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}\left(x_{n}\right)-f\left(x_{n}\right)\right| \\
& =\frac{1}{n} \sum_{k \notin H_{n}\left(x_{n}\right)}+\frac{1}{n} \sum_{k \in H_{n}\left(x_{n}\right)} \leqslant c E_{n}+A_{1} \frac{\left|H_{n}\left(x_{n}\right)\right|}{n} E_{n} \log \frac{4 n}{\left|H_{n}\left(x_{n}\right)\right|}
\end{aligned}
$$

i.e.,

$$
c<A_{1} \frac{\left|H_{n}\left(x_{n}\right)\right|}{n} \log \frac{4 n}{\left|H_{n}\left(x_{n}\right)\right|}
$$

which gives

$$
\left|H_{n}\left(x_{n}\right)\right|>A \frac{c}{|\log c|} n
$$

and this is exactly (ii).
Let us turn to the proof of Theorem 2. Let $c=a / 2$ in the above Lemma. If, for a given n, we have $E_{2 n}>a E_{n}$, then Lemma (ii) and (1.5) give

$$
A \frac{a / 2}{|\log (a / 2)|} n \phi\left(\frac{a}{2} E_{n}\right) \leqslant K
$$

by which

$$
E_{2 n} \leqslant E_{n} \leqslant C \phi^{-1}\left(\frac{1}{2 n}\right)
$$

for some C. On the other hand, if $E_{2 n} \leqslant a E_{n}$, then assuming that $E_{n} \leqslant$ $C \phi^{-1}(1 / n)$ is already proved, we obtain, from (1.7),

$$
E_{2 n} \leqslant a E_{n} \leqslant a C \phi^{-1}\left(\frac{1}{n}\right) \leqslant C \phi^{-1}\left(\frac{1}{2 n}\right) .
$$

Thus an easy induction gives $E_{2^{n}}(f) \leqslant C \phi^{-1}\left(1 / 2^{n}\right)$ which is equivalent to (1.8) (take into account that, by (1.7), we have

$$
\phi^{-1}(x) \leqslant a^{-1} \phi^{-1}\left(\frac{x}{2}\right)
$$

We have proved our theorem.

References

1. G. Alexits and D. Králik, Ubber den Annäherungsgrad der Approximation im starken Sinne von Stetigen Funktionen, Magyar Tud. Akad. Mat. Kut. Int. Közl. 8 (1963), 317-327.
2. G. Freud, Uber die Süttigungsklasse der starken Approximation durch Teilsummen der Fourierschen Reihe, Acta Math. Acad. Sci. Hungar. 20 (1969), 275-279.
3. L. Leindler, Uber die Approximation im starken Sinne, Acta Math. Acad. Sci. Hungar. 16 (1965), 255-262.
4. L. Leindler, On structural properties of functions arising from strong approximation of Fourier series, Anal. Math. 3 (1977), 207-212.
5. V. Totik, On the strong approximation of Fourier series, Acta Math. Acad. Sci. Hungar. 35 (1980), 151-172.
6. V. Totik, On the modulus of continuity in connection with a problem of J. Szabados concerning strong approximation, Anal. Math. 4 (1978), 145-152.
7. V. Totik, On the generalization of Fejer's summation theorem, in "Series, Functions, Operators, Proceedings of the International Conference in Budapest, 1980," pp. 1195-1199, North-Holland, Amsterdam, and Akad. Kiadó, Budapest, 1983.
