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Notes on Fourier Series: Strong Approximation
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Two results are proved about strong approximation of Fourier series. The first,
which goes in the positive direction, is the best possible refinement of an inequality
of L. Leindler. The second is related to the inverse problem and provides a unified
treatment to many earlier results. © 1985 Academic Press, Inc.

1. INTRODUCTION

Let f be an everywhere continuous 2n-periodic function, Sk(X) the kth
partial sum of its Fourier series and En = En(f) the error in the best
uniform approximation of f by trigonometric polynomials of order at
most n.

Since the 1963 work of G. Alexits and D. Kralik [1], many authors have
investigated the so-called strong approximation of Fourier series. Among
their results, perhaps the most important one is the inequality

2n

L: ISk-fIP~KpE~(f)
n k=n+ I

(p>O;n= 1, 2,... ) (1.1 )

due to L. Leindler [3] which can be ust;d to estimate strong means of the
type

(p>O, tnk~O)

(see [3,5]).
A natural generalization is the following: instead of x P (x ~ c), let us con­

sider a non-negative monotone increasing continuous function ¢J(x) (x ~ 0,
¢J(O) = 0). For such a ¢J, we proved in [7]

THEOREM A. The means

n

n + 1 k~O ¢J(ISk(X) - f(x)l)
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tend to zero for every continuous f if and only if there exists a constant A
such that

An analog of (1.1) is

(r E (0, (0)). (1.2)

THEOREM 1. The inequality

(XE [0, 2n], n= 1, 2,... ) (1.3)

holds for every 2n-periodic continuous function f if and only if there is a con­
stant A > 0 such that (1.2) holds true and

(r E (0, 1)). (1.4 )

Theorem 1 has many consequences of which we mention only one:

COROLLARY. If(1.2) and (1.4), then,for every P>O and for f(r)ELiptx
(0 < tx ~ 1),

<p-
I
en: I)P k~O (k+ I)P-I <P(ISk-fl))

~<p-I ( K P ±(k+ I)P-I <p((k+ 1)-r-~)).
(n+l) k=O

This generalizes a number of previous results, and the last inequality
cannot, in general, be improved.

Let us now turn to the inverse problem. We ask what smoothness
properties of f follow from the relation

00

sup L: <P(ISk(X)-f(x)I)<oo?
O";X";1tk=O

(1.5 )

Here, again, <p(x) is supposed to be monotone increasing and continuous
for x ~ 0, with <p(0) = O. For example, G. Freud [2] proved that if
<p(x)=xP (p>I), then (1.5) impliesfELip(ljp). Generalizing this result,
we proved [6]

THEOREM B. If <p is convex or concave, then (1.5) implies

f
21t <P- I(X)

w(f; <5) ~ K<5 2 dx
b X

(<5E[O,n]) (1.6)
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and this is the best possible result, since, for a function f satisfying (1.5),

f
21t tP -I(X)

w(f; b) ~ cb 2 dx
b X

(c > 0; bE [0, n]).

(w(f; b) is the modulus of continuity off)

If tP(x) = xP (0 < P < 1), then Theorem B gives only f E Lip 1 although
much more is true (see [4]):

THEOREM C. Iff(x)=xP (O<p< 1), then (1.5) implies

En(f) ~ Kn - lip.

Theorem C yields, among other things, that f is [vip] times continuously
differentiable (v, 0 < v < 1, is arbitrary).

Now we show that Theorem C and Freud's result are valid for very
general ¢/s.

THEOREM 2. If tP satisfies

tP(ar) ~ !tP(r ) (r E [0, 1]) (1.7)

with a constant 0 < a < 1, then (1.5) implies

(1.8)

As a corollary we get that under the only assumption (1.7), we have
(1.6 ).

2. PROOF OF THEOREM 1

I. Sufficiency. We shall use the inequality (see [5])

1 r 2n- I ISkj(X)- f(x)1 ~AIEn(f)log-
r i~1 r

(2.1 )

where 1~ r ~ n, the indices n < k l < k 2 < ... < k r ~ 2n are arbitrary, and Al

is an absolute constant. This gives at once that if A. > 0, X E (0, 2n] and
Jln,l(X) denotes the number of those n < k ~ 2n for which ISk(X) - f(x)1 >
A.En , then

Jln,l(X) ~ 2n exp( - AIA I)'



108 V. TOTIK

Let y E (0, (2AA d - I). By (1.4), q)(Y) ~ yAJ, A2a constant. Thus, by (1.2),

00 00

L q)(yk) e- k
/ A1 ~ L exp(k(Ay- AI-I))

k=2u k=2U
00

~ L e-k/(2Atl~Ke-I/(YAtl~Kq)(y)· (2.2)
k= 2/y

(K denotes constants, not necessarily the same.)
From (1.4) we obtain

2/y 00

L q)(yk) e-I</A\ ~ L ,p(y) e 3e-I</A\ ~ K,p(y)
k=1 1<=1

with some A 3 and this, together with (2.2), gives

00

L ,p(yk) e - I</A\ ~ K¢J(y)
1<=1

Now the proof of (1.3) is easy:

1 2n
- L ¢J(ISk(X)-f(x)l)
n k=n+ 1

1 00

=- L L ¢J(ls,(x) - f(x)l)
n k = 1 En(l<- I)"; Is/(x) - f(x)I"; En!<

1 00 1 00

~ - L ¢J(kEn) fln,k - 1(X) ~ K - I 2n,p(kEn) e- k/A1 ~ K¢J(En)
nk~1 n k_1

provided n is so large that En = En(f) E (0, (2AA 1) - I).

II. Necessity. The necessity of (1.2) follows from Theorem A.
To prove (1.4) let us assume on the contrary that there is a sequence

{an} with an!O (n-+ 00) and q)(40a n ) > nq)(20an )· We may also suppose
Lk=n+ 1 ak <an (n = 1, 2,... ). For m < n let

Q () ~ (cos(n - i) x cos(n + i) X) _2 . ~ sin ix
n.m x = L,. . = SIn nx L, -.-

i~l I I i=] I

be the well-known Fejer polynomial and let

00

f(x) = L akQ2k +2,2k(X).
k=1
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As IQn,ml ~ 10 we get

00

E2n+2(f)~E2n+2_2n_l(f)~10L ak~20an
k~n

and so

1 2-2n+2
2n+2 L tP(lsk(O)-f(O)I)

k = 2n +2

(n = 1, 2, ... )

109

1 2n+2+2n (_ 2n 1)
~ 2n + 2 L tP an L -:-

k=2"+2+ 1 i=k-2n+2 I

1 2n+2 + 2" -e- 10

~ 2n+2 k=2~2+ 1 tP(anlog(2
n
j(k- 2

n
+

2
)))

1 2n

~ 2n+ 3e40 tP(40an)~ cntP(20an) ~ cntP(E2" +2),

i.e., (1.3) is not satisfied, which proves the necessity of (1.4).

3. PROOF OF THEOREM 2

First we prove the following

LEMMA. IfIE C2" and 0 < c <!, then, for every natural number n, either

(i) E2n(f) ~ 2cEn(f) or

(ii) there exists a point XnE (0; 211:] such that the number of the indices
k for which

n<k~2n,

is at least A(cjllog cl) n where A denotes an absolute constant.

Proof Let

If 2cEn< E2n , then, using (2.1), we obtain for an X nE (0; 211:],
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i.e.,

which gives

V. TOTIK

and this is exactly (ii).
Let us turn to the proof of Theorem 2. Let c = aj2 in the above Lemma.

If, for a given n, we have E2n > aEn, then Lemma (ii) and (1.5) give

aj2 (a)
A Ilog(aj2)1 n~ "2 En ~ K

by which

for some C. On the other hand, if E2n ~ aEn, then assuming that En ~
C~-l(ljn) is already proved, we obtain, from (1.7),

E2n~aEn~aC~-1G) ~ C~-l (2
I
n}

Thus an easy induction gives E 2n(f) ~ C~ - 1(lj2 n
) which is equivalent to

(1.8) (take into account that, by (1.7), we have

We have proved our theorem.
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